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Summary

Motivated by searching for associations between genetic variants and brain imaging phenotypes, 

the aim of this paper is to develop a groupwise envelope model for multivariate linear regression in 

order to establish the association between both multivariate responses and covariates. The 

groupwise envelope model allows for both distinct regression coefficients and distinct error 

structures for different groups. Statistically, the proposed envelope model can dramatically 

improve efficiency of tests and of estimation. Theoretical properties of the proposed model are 

established. Numerical experiments as well as the analysis of an imaging genetic data set obtained 

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study show the effectiveness of the 

model in efficient estimation. Data used in preparation of this article were obtained from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.
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1. Introduction

To motivate the proposed methodology, we consider an imaging genetic data set from 745 

subjects collected by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study (http://

www.adni-info.org/) in order to advance the discovery in detection, invention, prevention as 

well as treatments of the Alzheimer’s disease. Specifically, each subject has brain volumes 

of 93 regions of interest, single nucleotide polymorphisms (SNPs) on candidate genes of the 

Alzheimer’s Disease, and other covariates including gender, age, education level, marital 

status and handedness. Alzheimer’s Disease (AD) is characterized by death of nerve cells 

and accelerated cerebral atrophy, leading to the shrinkage of various brain volumes, such as 

hippocampus. Similar to a recent large-scale imaging study for schizophrenia in Franke et al. 

(2016), we are interested in characterizing the genetic influences of the top 40 AD candidate 
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genes listed on the AlzGene database (www.alzgene.org) as of June 10, 2010 on structural 

brain phenotypes in ADNI.

A standard model in the imaging genetic literature (Vounou et al., 2010; Thompson et al., 

2013; Sun et al., 2015) is the multivariate linear regression given by

(1)

where Y is a r × 1 vector of multiple responses (e.g., brain volumes), X is a p × 1 vector of 

covariates, and the errors ε follows a distribution with mean 0 and positive definite 

covariance matrix Σ ∈ ℝr×r. Moreover, μ ∈ ℝr and β ∈ ℝr×p are unknown intercept and 

regression coefficients. It is common to calculate the ordinary least squares estimator of β by 

regressing each element in Y on the predictors of interest. This method, however, ignores the 

relationship among different response components. A novel envelope modeling framework 

introduced in Cook et al. (2010) explicitly uses such relationship to identify a part of the 

responses that is immaterial to the estimation of β, while bringing extraneous variation. This 

immaterial part is then accounted for in the subsequent estimation, making the estimation 

more efficient. After the original development, advances have been taken place to extend the 

scope of envelope model (Su and Cook, 2011, 2012, 2013; Cook et al., 2013; Cook and 

Zhang, 2015; Khare et al., 2017).

However, model (1) is not sufficient for addressing a more specific question of interest. 

Specifically, it is interesting to investigate how the associations between AD genetic variants 

and sub-cortical volume measures differ across male and female groups. Suppose that we 

observe imaging genetic data from subjects in L different groups. For each l = 1,…, L, the l

−th group has n(l) observations and the total sample size is . By incorporating 

such group information, we can reformulate model (1) as

(2)

where Y(l)j ∈ ℝr is the jth observed response vector in the l−th population, μ(l) ∈ ℝr is the 

mean of the l−th population, X(l)j ∈ ℝp is the jth observed covariate vector in the l−th 

population, β(l) ∈ ℝr×p contains the regression coefficients for the l−th population, and ε(l)j 

follows some distribution with mean 0 and covariance matrix Σ(l). Throughout this paper, we 

use subscript (l) to denote the l−th population and subscripts without parenthesis to number 

the observations. Without loss of generality, we assume that , l = 

1,…,L are centered at 0 in the sample for each group. Model (2) is referred to as the standard 

model in later discussion.

The aim of this paper is to develop a new groupwise envelope modelling framework for 

model (2), which allows for distinct regression coefficients and the heteroscedastic error 

structure across groups. Compared with the existing literature (Su and Cook, 2013; Cook et 

al., 2010), we make at least three major contributions. First, we develop an efficient 
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estimation method to estimate distinct genetic-volume associations across groups under the 

heteroscedastic error structure. In contrast, the existing envelope models assume either a 

homogenous error structure or distinct means across groups without covariate X. Second, we 

examine the asymptotic properties of the proposed estimates under some mild conditions. 

Third, our simulation studies and the ADNI data analysis confirm the efficiency gains 

obtained by using the groupwise envelope model. An alternative way to gain estimation 

efficiency in model (2) is to fit a separate envelope model to each group. However, as will be 

shown in Sections 3 and 5, efficiency is lost due to ignoring the common characteristics in 

response variables across groups.

The article is organized as follows. Section 2 reviews the envelope model and introduces the 

groupwise envelope model and its estimation procedure. Section 3 systematically 

investigates the asymptotic properties of all estimators. Simulation studies are conducted in 

Section 4. A real data analysis of the imaging genetic data set from ADNI is described in 

Section 5. Conclusion remarks are given in Section 6.

2. Methods

2.1 A Review of Envelope Models

We first introduce some notation. We use PS to denote the projection matrix onto span(S) or 

S if S is a matrix or a subspace, and QS = I − PS. With a matrix A ∈ ℝm×n, vec(A) ∈ ℝmn 

stacks the columns of A into a vector. The Kronecker product is denoted by ⊗, X ∼ Y means 

X and Y has the same distribution, and X ⫫ Y means that X and Y are independent.

The original envelope model (Cook et al., 2010) was developed for model (1). Under (1), we 

partition the response vector Y into a material part and an immaterial part, where the 

distribution of the material part changes with the predictor X and the distribution of the 

immaterial part does not. More specifically, let  be a subspace of ℝr, L be an orthogonal 

basis of  and L0 be an orthogonal basis of . The linear combinations of the responses 

LTY and  are called the material part and the immaterial part if the following two 

conditions are satisfy: (a)  and (b) . Condition (a) 

indicates that the distribution of the immaterial part does not depend on X, and condition (b) 

indicates that given X, the material part and immaterial part are uncorrelated. Let 

. Conditions (a) and (b) are also equivalent to: (I)  and (II) 

 (Cook et al., 2010). Condition (I) indicates that the 

immaterial part does not contain information on β and condition (II) indicates that the 

variation Σ can be decomposed into the variation due to the material part and the variation 

due to the immaterial part. When Σ has the structure in condition (II),  is a reducing 

subspace of Σ (Conway, 1990). Then, the Σ-envelope of , denoted by , is defined to 

be the smallest reducing subspace of Σ containing . Model (1) is called the envelope model 

when conditions (I) and (II) are imposed.

Let u denote the dimension of , Γ ∈ ℝr×u be an orthogonal basis of , and Γ0 ∈ 

ℝr×(r−u) be an orthogonal basis of . The coordinate form of the envelope model is
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where β = Γη, η ∈ ℝu×p carries the coordinates of β with respect to Γ, and Ω = ΓT ΣΓ and 

 carry the coordinates of Σ with respect to Γ and Γ0, respectively. When u = r, 

, the envelope model degenerates to the standard multivariate linear regression 

model. As shown in Cook et al. (2010), the envelope estimator of β is more efficient than or 

at least as efficient as the standard estimator. The efficiency gains can be substantial when 

‖Σ1‖ ≪ ‖Σ2‖, where ‖·‖ denotes the spectral norm of a matrix or vector.

2.2 Formulation of Groupwise Envelop Model

Under model (2), let  be a subspace of ℝr, L be an orthogonal basis of  and L0 be an 

orthogonal basis of . Then for each l, the material part LTY(l)j and the immaterial part 

 should satisfy (A)  and (B) . From 

conditions (A) and (B),  is a reducing subspace of all Σ(l) and  for l = 1,

…,L. Therefore, we define the groupwise envelope to be the intersection of all such . 

More specifically, let  denote the collection of all covariance 

matrices, and . Then the -envelope of , denoted by , is 

the smallest subspace that reduces each matrix in  and contains . When  appears 

in subscripts, it is shortened to . From the definition of , we have

(3)

Model (2) is called the groupwise envelope model if conditions in (3) are imposed.

Let Γ ∈ ℝr×u be an orthogonal basis of  and Γ0 ∈ ℝr×(r−u) be its completion. The 

coordinate form of the groupwise envelope model is given by

(4)

for each l = 1,…,L, where β(l) = Γη(l), η(l) ∈ ℝu×p carries the coordinate of β(l) with respect 

to Γ, and Ω(l) ∈ ℝu×u and Ω0 ∈ ℝ(r−u)×(r−u) are symmetric matrices that carry the coordinates 

of Σ(l) with respect to Γ and Γ0, respectively. The groupwise envelope model degenerates to 

the envelope model in Cook et al. (2010) if L = 1.

For a fixed dimension u, the number of parameters in the groupwise envelope model (4) is 

N(u) = Lr + Lup + Lu(u + 1)/2 + (r − u)(r − u + 1)/2 + u(r − u). This is because we need Lr 
parameters for all μ(l)s′, Lup parameters for all η(l)s′, Lu(u + 1)/2 parameters for all Ω(l)s′, 

and (r − u)(r − u + 1)/2 parameters for Ω0. The envelope subspace  is on an r × u 
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Grassmann manifold, which is the set of all u dimensional subspaces in an r dimensional 

space, so it has u(r − u) free parameters.

2.3 Estimation Procedure

The groupwise envelope model does not require normality, but we will use the normal 

likelihood function as a pseudo likelihood function to calculate estimators. Technical details 

are included in Supplemental Section A. Let θ = (μ, η, Ω, Ω0) be a collection of parameters, 

where μ = (μ(1),…,μ(L)), η = (η(1),…,η(L)), and Ω = (Ω(1),…,Ω(L)). For a fixed dimension u, 
u = 0,…,r, the normal log likelihood of the groupwise envelope model is given by

(5)

When Γ is fixed, the estimators of μ(l), η(l), Ω(l), and Ω0, which maximize ℓ(θ), can be written 

as explicit expressions of Γ. Let , and 

, where  is the centered data matrix for X and 

 is the centered data matrix for Y for group l. Substitute them back to ℓ(θ), we 

get

where  denotes the r×u Grassmann manifold. To emphasize that Γ is an orthogonal 

basis of , we put subscript Γ on . After we obtained ,  can be any 

orthogonal basis of . For l = 1,…,L, the estimators for all other parameters are 

given as follows:

•
, where ;

•
;

•
;

•
, where  is the completion of ;
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• , where  is the ordinary least squares estimator of 

β(l);

•
.

To estimate the dimension of , we apply the Bayesian information criterion (BIC). 

Let l∗(u) be the maximized l for a fixed u, and N(u) be the number of parameters discussed 

in Section 2.2. We choose a value uopt that minimizes BIC(u) = −2l∗(u) + log(n)N(u).

3. Theoretical Properties

In this section, we examine the theoretical properties of the groupwise envelope estimators. 

We present the following theoretical properties, whose proofs are included in Supplemental 

Section B.

Proposition 1

Under the groupwise envelope model (4), assume that the errors are independent and have 

finite fourth moments. Then  is a  consistent estimator of β(l) and  is a 

consistent estimator of Σ(l) for l = 1, …, L.

Proposition 1 establishes the  consistency of the groupwise envelope estimators. Notice 

that normality is not required even though the estimators are derived by maximizing the 

normal likelihood function.

Proposition 2

Suppose that the conditions of Proposition 1 hold and f(l) = n(l)/n does not change with n. 

Then,  converges in distribution to a multivariate normal distribution with 

mean 0 for each l = 1,…, L. Furthermore, under the normality, we have

where  denotes convergence in distribution and 

 for l = 1, …, L, in which T is 

given by

Proposition 2 provides the asymptotic distribution of the groupwise envelope estimator and 

derives explicit form of the asymptotic variance under the normality. The first term 
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 is the asymptotic variance of  for known Γ, and the second term 

 is the cost of estimating the envelope subspace .

Suppose that we fit separate envelope model to the data in each group, and we denote their 

estimators as  for l = 1, …, L. We have the following results.

Proposition 3

Suppose that the conditions of Proposition 1 hold, then  converges 

in distribution to a multivariate normal distribution with mean 0 for l = 1, …, L. 

Furthermore, under the normality, we have

where  for l = 1, …, L, in 

which .

Corollary 4

V(l),senv ⩾ V(l) for l = 1, …, L.

Proposition 3 gives the asymptotic distribution of . Corollary 4 indicates that 

the groupwise envelope estimator is more efficient. A close examination reveals that V(l) and 

V(l),env differ only in terms of T and T2. This suggests that if Γ is known, the asymptotic 

variance for  is the same. However, the cost of estimating  is smaller for the 

groupwise envelope model. This is because that the groupwise envelope model uses all the 

data to estimate , whereas the separate envelope model only uses the data from the l

−th group to estimate . We also notice that with finite sample, the envelope subspace 

 calculated by fitting separate envelope model varies across groups.

4. Simulation Study

In this section, we use Monte Carlo simulations to evaluate the finite-sample performance of 

the groupwise envelope model (4). We generated the data from model (4) with two groups 

(L = 2), which have 40% and 60% of the observations. We set r = 10, p = 3, and u = 1. The 

matrix (Γ, Γ0) was obtained by normalizing an r × r matrix of independent normal variates, 

μ(1) was a vector of 3 and μ(2) was a vector of 10, η(1) was a vector of independent 

variates and η(2) was a vector of independent  variates. Let A ∈ ℝ (r−u)×(r−u) be a matrix 

of independent normal (5, 12) variates, Ω(1) and Ω(2) both be  variates, and Ω0 = AAT. The 

predictors were independent normal (0, 52) variates for the first group and independent 

normal (0, 102) variates for the second group. We varied the sample size from 100, 300, 

1000 and 3000. For each sample size, 200 replications were generated. The standard model 
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(2), the envelope model (Cook et al., 2010), separate envelope model and the groupwise 

envelope model (4) were fit to the data. Standard deviation of each element in β(1) and β(2) 

was calculated based on the 200 replications for each method at each sample size. We also 

computed the bootstrap standard deviations of each element in β(1) and β(2) based on 200 

bootstrap samples. The results for a randomly chosen element in β(1) and a randomly chosen 

element in β(2) are summarized in Figure 1. For clarity, we did not draw the line for the 

standard deviation of the standard model, but only displayed its asymptotic standard 

deviation.

We have the following observations from Figure 1. The groupwise envelope estimator is 

consistent and its standard deviation approaches to the asymptotic standard deviation as 

sample size increases, which agrees with Proposition 1. It is also observed that the 

groupwise envelope model achieves substantial efficiency gains over the standard model. 

Take the element in the right panel of Figure 1 for example, the standard deviation of the 

groupwise envelope estimator is already smaller than the asymptotic standard deviation of 

the standard estimator with n = 100. This means by using the groupwise envelope model, 

with 100 samples we have achieved the efficiency of taking infinity number of samples 

under the standard model. We also notice that the bootstrap standard deviation is a good 

estimation of the sample standard deviation. The envelope model with constant covariance 

structure (Cook et al., 2010) has standard deviation about five times as large as the 

groupwise envelope model, indicating that accommodating the groupwise error structure 

brings extra efficiency gains. The separate envelope model also has larger standard 

deviations than the groupwise envelope model, as asserted in Corollary 4. The difference is 

more pronounced in one group than the other.

We investigated the numerical properties of the groupwise envelope model under non-

normal errors in Web Appendix A and Web Appendix B. In Web Appendix A, we 

considered the estimation standard deviation of the groupwise envelope model under 

different non-normal error distributions including t distribution with degrees of freedom 6, 

uniform distribution defined on the unit interval, and chi-squared distribution with degrees 

of freedom 4. We examined the selection performance of BIC under non-normal errors in 

Web Appendix B.

5. The Alzheimer’s Disease Neuroimaging Initiative

We applied the groupwise envelope model to the imaging genetic data set obtained from 

ADNI study as described in Section 1. We used the image processing pipeline and quality 

control methods described in Zhu et al. (2014) to process the structural Magnetic Resonance 

Imaging (MRI) data and genetic data downloaded from the ADNI publicly available 

database (http://adni.loni.usc.edu/). Our problem of interest is to investigate the genetic 

effects of the SNPs on the top 40 AD candidate genes on the brain volumes of 93 regions of 

interest (ROI), whose names and abbreviation are given in the supplementary material in 

Zhu et al. (2014) across male and female groups. The top 40 AD candidate genes are listed 

on the AlzGene database (www.alzgene.org) as of June 10, 2010 on the brain volumes of 93 

ROIs across male and female groups. The selection of the genes is described in Section 4.1 

in Zhu et al. (2014). To correct for normal variation in head size, we used the proportion 
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method to calculate ROI tissue-to-intracranial volume ratios and then took logarithm of 

these ratios. We selected the 1071 SNPs on the 37 top genes and Apolipoprotein E (APOE) 

ε4. We first performed a principal component analysis on the 1071 SNP predictors. Figure 2 

presents the 1071 × 1071 correlation matrix of all 1071 SNPs. We selected 205 principal 

components (PCs) whose loadings have corresponding eigenvalues greater than 1, and these 

205 PCs explain 89.76% of the total variation of all SNP predictors.

We fit a linear regression of the logarithm of the ratios for the brain volumes on five PCs 

obtained from the entire SNP data accounting for the population stratification. The residuals 

are used for multivariate responses in the groupwise envelop model (4). We used gender 

(male versus female) as the group variable and the SNP PCs and all covariates except gender 

as predictors. Note that the responses are unitless. The covariates include APOE ε4, age 

(years, from 55 to 91), education level (years, from 6 to 20), marriage status (married, 

widowed, divorced, other) and handedness (right-handed, other). All variables were 

standardized. BIC suggests u = 1. For each element in β(l), we computed the ratio of the 

bootstrap standard deviation under the standard model versus the bootstrap standard 

deviation under the groupwise envelope model. As demonstrated in Figure 1, this ratio is a 

good approximation to the ratio of actual standard deviations. The ratios range from 4.56 to 

136.80, with an average of 29.71 for the male group, and from 6.06 to 351.82 with an 

average of 56.99 for the female group. This indicates that the groupwise envelope model 

obtains substantial efficiency gains over the standard model (2). A boxplot of the ratios is 

given in Figure 3. The efficiency gains can be explained by the covariance structure: 

,  and . This indicates that the variation of the 

immaterial part is much larger than that of the material part, and by identifying and 

accounting for the immaterial variation, the groupwise envelope model achieves substantial 

efficient estimation in this case. The efficiency gains in estimation lead to better prediction 

performance. The prediction error is estimated by the average of 50 five-fold cross 

validations with random splits, and the identity inner product is used to bind the responses. 

The standard model has a prediction error of 21.27, and the groupwise envelope model has a 

prediction error of 9.65, which is more than a 50% reduction.

We also fitted the separate envelope model to the data. BIC suggested u = 1 for both male 

and female groups. The ratios of the bootstrap standard deviation under the standard model 

to that under the separate envelope model range from 1.05 to 16.63 with an average of 3.16 

for the male group, and range from 1.01 to 13.93 with average of 2.68 for the female group. 

The ratios are also displayed in Figure 3. The boxplot reveals that the groupwise envelope 

model and the separate envelope model are both more efficient than the standard model. But 

by using the information from all the groups in the estimation of , the groupwise 

envelope model achieves substantially more efficiency gains than the separate envelope 

model, which confirms the results in Corollary 4.

To investigate the genetic effects of the SNPs on the brain volumes of 93 ROIs through the 

groupwise envelope model, we looked at a submatrix of , say , which consisted of 

columns corresponding to the 205 PCs and APOE ε4. And we calculated 

, where  denotes the (j, i)th element of  and  denotes 
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the jth row of , j = 1, …, 93 and i = 1, …, 206. In particular, j = 30 and j = 69 

correspond to the right and left part of hippocampal formation region, which are important 

ROIs. Figure 4 shows c30,i and c69,i for the hippocampal formation region. In particular, the 

206th element in the horizontal axis corresponds to APOE ε4. We have c30,206 = c69,206 = 

0.077 for the male group and c30,206 = c69,206 = 0.110 for the female group.

To consider the relationship between SNPs and ROI volumes in the coefficient matrix, we 

focused on the PCs with large coefficients based on the 98th quantile of the absolute values 

of the estimated regression coefficients. After thresholding, 42 PCs were selected for the 

male group and 49 PCs were selected for the female group. The heatmaps of regression 

coefficients for each group under the groupwise envelope model and the standard model are 

displayed in Figure 5. The horizontal axes in Figure 5 include the selected PCs as well as 

APOE ε4. Under the groupwise envelope model, it is easier to identify the regions with 

diminishing regression coefficients.

We also tested if a coefficient equals to 0 for all elements in β. An ROI is chosen if at least 

one of the p-values in the corresponding coefficients is smaller than 0.05. Based on this 

criterion, all ROIs are selected under the standard model. Under the groupwise envelope 

model, 41 ROIs are selected for the male group. And eight additional ROIs lat.f-o.gy.R, 
sup.f.gy.R, hiopp.R, caud.neuc.R, mid.t.gy.L, prec.gy.L, par.lb.WM.R, and ant.caps.R are 

selected for female group, i.e. 49 ROIs are selected for female group. This indicates that the 

unselected ROIs are significant under the homogeneous model, but not under the model that 

considers heteroscedasticity. The selected ROIs are listed in Table 1. Among the selected 

ROIs, (i) me.f-o.gy.L/R, lat.f-o.gy.R, inf.f.gy.L/R, f.lob.WM.L, sup.f.gy.L/R and me.f.gy.R 

are related to the function of management (making a decision and carrying out tasks), 

attention (interest and concentration) and working memory; (ii) tmp.pl.R, sup.gy.R, 

sup.t.gy.L/R, mid.t.gy.L/R, inf.t.gy.L are related to memory and language; (iii) sup.p.lb.L/R 

and par.lb.WM.R are related to the sense of the space and size; and (iv) sup.o.gy.L/R, 

mid.o.gy.R, me.o.gy.L/R are located in the back of the brain playing an important role in 

vision.

We then use the polygenic score to study the genetic relationship between the SNPs and the 

brain volumes on 93 ROIs. The genetic effects in our setting are contained in the 205 PCs 

obtained from the SNPs as well as APOE ε4. Let l be the gender indicator, l = 1 for male 

and l = 2 for female. Then for group l, Yl = (Yl,1,…, Yl,93)T is the response vector and Zl 

denotes the vector of 205 PCs and all the covariates. For each response Yl,j, j = 1, …, 93, we 

fit the linear regression model of Yl,j on Zl, and obtained the estimated coefficients  and 

the p-values for each element in . We set the significance level at 0.05. Suppose  are 

the significant genetic effects and  are their coefficients, we can construct the polygenic 

score as . We then fit the regression of Yl,j on , and calculated the total sum 

of squares SSTl,j and regression sum of squares SSRl,j. We then computed 

 and . Based on the 

value of R1 and R2, the genetic effects of SNPs explain 9.55% and 9.60% of the variation in 
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the male and female groups, respectively. The association of the polygenic score with the 

phenotypical variation is tested based on the chi-squared distribution with non-centrality 

parameter λl and degrees of freedom 1, where , n(1) = 441 and n(2) = 

304. Then the power of the two-tailed chi-squared test with significance level α is obtained 

from

where Φ is the cumulative distribution function for the standard normal distribution. We 

found both groups have power 1 with α = 0.05 in the testing.

6. Conclusion

We have proposed a groupwise envelope model, which is an efficient model for estimating 

regression coefficients for heterogeneous groups. Since the interest of research in 

heterogeneity soars, such as the great attention in precision medicine, the development of 

models dealing with heterogeneity is desired in multivariate response analysis. The 

groupwise envelope model allows for distinct regression coefficients and heteroscedastic 

error structure for different groups. Our simulation studies and ADNI data analysis 

demonstrates the efficiency gains obtained by the groupwise envelope model, compared to 

both standard model and separate envelope model. The groupwise envelope model leads to a 

better understanding of the genetic effects of the top 40 AD candidate genes for male and 

female groups on brain volumes of 93 ROIs in the ADNI dataset.

For future research, a sparse groupwise envelope model that pinpoints the immaterial 

responses is desired for real applications, as it is more interpretable. If we consider the 

spatial structure of the brains, we would have a multi-dimensional array (tensor) response. Li 

and Zhang (2016) developed a tensor response envelope model that achieves efficient 

estimation in tensor regression. We can expand our methodology to handle heteroscedastic 

error structure in the tensor envelope model. In addition, a Bayesian version of this model 

that incorporates prior information from earlier studies is also worth exploration. As 

longitudinal data and missing data appear in Alzheimer’s study, a groupwise envelope model 

that can handle these data structures would also be of practical use.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/
ADNI_Acknowledgement_List.pdf.

Appendix

A: Estimation of the groupwise envelope model

we first hold Γ fixed and derive the estimators of parameters μ(l), η(l), Ω(l), l = 1,…, L, and 

Ω0 as a function of Γ. The derivative of the log likelihood l = l(θ) in (5) with respect to μ(l) is

(A.1)

Setting the derivative in (A.1) to 0 and using the fact that  is centered at 0, we have 

. Substitute  into the likelihood, we now consider the derivative of l in (5) with 

respect to η(l):

(A.2)

We set the the derivative in (A.2) to be 0 and obtain

where  is an n(l) × p matrix with its ith row being ,  is an n(l) × r matrix with its 

ith row being . Substitute  and  to the log likelihood function, we have

(A.3)

We can easily get the estimators of Ω(l) and Ω0 by taking the derivatives, and the estimators 

are
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(A.

4)

Substitution of (A.4) into (A.3) gives

(A.5)

By Lemma 6.2 of Cook et al. (2010), we rewrite the function in (A.5) as

Then the objective function for Γ is

and Γ can be obtained by minimizing the preceding objective function.

B: Proofs of theoretical results in Section 3

Proof of Proposition 1 and Proposition 2

For preparation, if A ∈ ℝm×m is a symmetric matrix, vech(A) ∈ ℝm(m+1)/2 denotes the 

vector that stacks the lower triangle of A into a vector. The notations 

and  are expansion and contraction operators that connect vec and 

vech: vec(A) = Em vech(A) and vech(A) = Cm vec(A).

We use Proposition 4.1 in Shapiro (1986) to prove Proposition 1. Let h denote the 

parameters under the standard model, and let ϕ denote the parameters under the groupwise 

envelope model. Then 

, 

and 

. We use J to denote the Fisher information matrix under the standard model, and G to 

denote the gradient matrix. Then
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where g1=ILr, g2 is a Lpr × Lpu block diagonal matrix whose all diagonal blocks are Ip ⊗ Γ, 

g3 = (η(1) ⊗ Ir,…,η(L) ⊗ Ir)T, g4 id a Lr(r + 1)/2 × ur block diagonal matrix whose all 

diagonal blocks are 

and . Now we match Shapiro’s 

notations with our notations. Shapiro’s θ is our ϕ; Shapiro’s ξ is our h; Shapiro’s  is the 

standard estimator of h; Shapiro’s Δ is our gradient matrix G; Shapiro’s V is our J; and 

Shapiro’s discrepancy function F is lmax − l, where l is the log likelihood function and lmax 

is the maximum value of l attained when h is the standard estimator of h. Specifically,

It is easy to see that lmax − l satisfies the conditions 1 – 4 in Section 3 of Shapiro (1986). 

Since J is full rank, we have rank (GT JG) = rank (J). As the standard estimator of h is 

consistent and converges in distribution to a normal distribution with mean 0 and covariance 

J−1, all the conditions in Proposition 4.1 of Shapiro (1986) are satisfied. Thus, the groupwise 

envelope estimator  is a  consistent estimator of h, and  has asymptotically 

normal distribution with mean 0.

When the errors are normally distributed, then J has a closed form:

where f(l) = n(l)/n is the proportion of the l–th population, J1 is a Lr × Lr block diagonal 

matrix whose diagonal blocks are , J2 is a Lpr × Lpr block diagonal 

matrix whose diagonal blocks are , and J3 is a 

{Lr(r + 1)/2} × {Lr(r +1)/2} block diagonal matrix whose diagonal blocks are 
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. The asymptotic 

variance of  under the groupwise envelope model then has a closed form Venv = G(GT 

JG)†GT, where A† denotes the Moore-Penrose generalized inverse of a matrix A. After 

some straightforward calculations, the asymptotic variance of vec  is 

and the asymptotic variance of  is (1/f(l))Σ(l), for l = 1,…,L.

Proof of Proposition 3

Proof of Proposition 3 follows directly from (5.7) in Cook et al. (2010).
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Figure 1. 
Left panel: Standard deviations for a random picked element in β(1). Right panel: Standard 

deviations for a random picked element in β(2). The –□–, –x– and –◊– lines mark the actual, 

bootstrap and asymptotic standard deviations of the groupwise envelope model. The –∗– and 

– – lines mark the actual and asymptotic standard deviation of the separate envelope model. 

The –o– line marks the standard deviations of the envelope estimator in Cook et al. (2010). 

The…line marks the asymptotic standard deviations of the standard model.
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Figure 2. 
Plot of the correlation matrix. The top panel shows the correlation of 1071 SNPs and the 

bottom panel is the enlarged version for the first 200 SNPs. This figure appears in color in 

the electronic version of this article.
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Figure 3. 
Boxplot of the ratio of the bootstrap standard deviation under the standard model to the 

bootstrap standard deviation under the groupwise envelope model or separate envelope 

model. The left panel is boxplot of the ratios for the male group, and the right panel is 

boxplot of the ratios for the female group. The horizontal line is at 1.
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Figure 4. 
Plot of the proportions of the absolute value of coefficient for SNPs in the Euclidean norm 

of the coefficient vector corresponding to the region: the last on the horizontal axis denotes 

APOE ε4 and the remaining is for 205 PCs. The first row is for left hippocampal formation 

region, and the second row is for the right hippocampal formation region. The left panel is 

for the male group, and the right panel is for the female group. This figure appears in color 

in the electronic version of this article.
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Figure 5. 
Heatmaps of the regression coefficients: the last on the horizontal axis denotes APOE ε4 and 

the remaining is for the selected PCs. The first row is for groupwsie envelope model, and the 

second row is for the standard model (2). The left panel is for the male group, and the right 

panel is for the female group. This figure appears in color in the electronic version of this 

article.
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Table 1

The selected ROIs based on the p-value of βred. The italic ROIs in groupwise envelope model are regions 

additionally selected from female group except 41 common selected ROIs.

Groupwise Envelope model Standard model

me.f-o.gy.R pstc.gy.R me.f-o.gy.R sup.o.gy.R tmp.pl.L

lat.ve.L ling.gy.R mid.f.gy.R caud.neuc.L ent.cort.L

insula.R me.f.gy.R lat.ve.L sup.gy.L inf.o.gy.R

lat.ve.R amyg.L insula.R ant.caps.L sup.o.gy.L

glob.pal.R me.o.gy.L prec.gy.R oc.lb.WM.R lat.o.t.gy.R

glob.pal.L mid.t.gy.R lat.f-o.gy.R mid.f.gy.L ent.cort.R

inf.f.gy.L corp.col cing.R sup.p.lb.L hiopp.L

ang.gyr.R sup.t.gy.R lat.ve.R caud.neuc.R thal.L

tmp.pl.R me.o.gy.R me.f.gy.L cun.L par.lb.WM.R

nuc.acc.R thal.R sup.f.gy.R prec.L insula.L

f.lob.WM.L lat.f-o.gy.R glob.pal.R par.lb.WM.L pstc.gy.R

subtha.nuc.L sup.f.gy.R glob.pal.L tmp.lb.WM.R ling.gy.R

sup.o.gy.R hiopp.R putamen.L sup.gy.R me.f.gy.R

caud.neuc.L caud.neuc.R inf.f.gy.L sup.t.gy.L amyg.L

sup.p.lb.L mid.t.gy.L putamen.R unc.L me.o.gy.L

prec.L prec.gy.L f.lob.WM.R mid.o.gy.R parah.gy.R

sup.gy.R par.lb.WM.R parah.gy.L mid.t.gy.L ant.caps.R

sup.t.gy.L ant.caps.R ang.gyr.R ling.gy.L mid.t.gy.R

unc.L tmp.pl.R sup.f.gy.L occ.pol.R

mid.o.gy.R subtha.nuc.R nuc.acc.L corp.col

ling.gy.L nuc.acc.R oc.lb.WM.L amyg.R

sup.f.gy.L unc.R pstc.gy.L inf.t.gy.R

nuc.acc.L cing.L inf.f.gy.R sup.t.gy.R

inf.f.gy.R fornix.L prec.gy.L mid.o.gy.L

me.f-o.gy.L f.lob.WM.L tmp.lb.WM.L ang.gyr.L

per.cort.R pec.R me.f-o.gy.L me.o.gy.R

sup.p.lb.R subtha.nuc.L per.cort.R cun.R

per.cort.L post.limb.L sup.p.lb.R lat.o.t.gy.L

inf.t.gy.L post.limb.R lat.f-o.gy.L thal.R

ent.cort.L hiopp.R per.cort.L occ.pol.L

ent.cort.R inf.o.gy.L inf.t.gy.L fornix.R
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